Mathematical analysis and applications : selected topics / edited by Michael Ruzhansky, Hemen Dutta, Ravi P. Agarwal.
Material type:
TextPublisher: Hoboken, NJ : John Wiley & Sons, Inc., [2018]Description: 1 online resourceContent type: - text
- computer
- online resource
- 9781119414308
- 111941430X
- 515 23
- QA300 .M225 2018
Includes bibliographical references and index.
Online resource; title from digital title page (viewed on April 19, 2018).
<P><b>Preface </b><i>xv</i></p> <p><b>About the Editors </b><i>xxi</i></p> <p><b>List of Contributors </b><i>xxiii</i></p> <p><b>1 Spaces of Asymptotically Developable Functions and Applications </b><i>1<br /></i><i>Sergio Alejandro Carrillo Torres and Jorge Mozo Fernández</i></p> <p>1.1 Introduction and Some Notations <i>1</i></p> <p>1.2 Strong Asymptotic Expansions <i>2</i></p> <p>1.3 Monomial Asymptotic Expansions <i>7</i></p> <p>1.4 Monomial Summability for Singularly Perturbed Differential Equations <i>13</i></p> <p>1.5 Pfaffian Systems <i>15</i></p> <p>References <i>19</i></p> <p><b>2 Duality for Gaussian Processes from Random Signed Measures </b><i>23<br /></i><i>Palle E.T. Jorgensen and Feng Tian</i></p> <p>2.1 Introduction <i>23</i></p> <p>2.2 Reproducing Kernel Hilbert Spaces (RKHSs) in the Measurable</p> <p>Category <i>24</i></p> <p>2.3 Applications to Gaussian Processes <i>30</i></p> <p>2.4 Choice of Probability Space <i>34</i></p> <p>2.5 A Duality <i>37</i></p> <p>2.A Stochastic Processes <i>40</i></p> <p>2.B Overview of Applications of RKHSs <i>45</i></p> <p>Acknowledgments <i>50</i></p> <p>References <i>51</i></p> <p><b>3 Many-BodyWave Scattering Problems for Small Scatterers and CreatingMaterials with a Desired Refraction Coefficient </b><i>57<br /></i><i>Alexander G. Ramm</i></p> <p>3.1 Introduction <i>57</i></p> <p>3.2 Derivation of the Formulas for One-BodyWave Scattering Problems <i>62</i></p> <p>3.3 Many-Body Scattering Problem <i>65</i></p> <p>3.3.1 The Case of Acoustically Soft Particles <i>68</i></p> <p>3.3.2 Wave Scattering by Many Impedance Particles <i>70</i></p> <p>3.4 Creating Materials with a Desired Refraction Coefficient <i>71</i></p> <p>3.5 Scattering by Small Particles Embedded in an Inhomogeneous Medium <i>72</i></p> <p>3.6 Conclusions <i>72</i></p> <p>References <i>73</i></p> <p><b>4 Generalized Convex Functions and their Applications </b><i>77<br /></i><i>Adem Kiliçman andWedad Saleh</i></p> <p>4.1 Brief Introduction <i>77</i></p> <p>4.2 Generalized E-Convex Functions <i>78</i></p> <p>4.3 <i>E</i><i>££</i>-Epigraph <i>84</i></p> <p>4.4 Generalized <i>s</i>-Convex Functions <i>85</i></p> <p>4.5 Applications to Special Means <i>96</i></p> <p>References <i>98</i></p> <p><b>5 Some Properties and Generalizations of the Catalan, Fuss, and FussCatalan Numbers </b><i>101<br /></i><i>Feng Qi and Bai-Ni Guo</i></p> <p>5.1 The Catalan Numbers <i>101</i></p> <p>5.1.1 A Definition of the Catalan Numbers <i>101</i></p> <p>5.1.2 The History of the Catalan Numbers <i>101</i></p> <p>5.1.3 A Generating Function of the Catalan Numbers <i>102</i></p> <p>5.1.4 Some Expressions of the Catalan Numbers <i>102</i></p> <p>5.1.5 Integral Representations of the Catalan Numbers <i>103</i></p> <p>5.1.6 Asymptotic Expansions of the Catalan Function <i>104</i></p> <p>5.1.7 Complete Monotonicity of the Catalan Numbers <i>105</i></p> <p>5.1.8 Inequalities of the Catalan Numbers and Function <i>106</i></p> <p>5.1.9 The Bell Polynomials of the Second Kind and the Bessel Polynomials <i>109</i></p> <p>5.2 The CatalanQi Function <i>111</i></p> <p>5.2.1 The Fuss Numbers <i>111</i></p> <p>5.2.2 A Definition of the CatalanQi Function <i>111</i></p> <p>5.2.3 Some Identities of the CatalanQi Function <i>112</i></p> <p>5.2.4 Integral Representations of the CatalanQi Function <i>114</i></p> <p>5.2.5 Asymptotic Expansions of the CatalanQi Function <i>115</i></p> <p>5.2.6 Complete Monotonicity of the CatalanQi Function <i>116</i></p> <p>5.2.7 Schur-Convexity of the CatalanQi Function <i>118</i></p> <p>5.2.8 Generating Functions of the CatalanQi Numbers <i>118</i></p> <p>5.2.9 A Double Inequality of the CatalanQi Function <i>118</i></p> <p>5.2.10 The <i>q</i>-CatalanQi Numbers and Properties <i>119</i></p> <p>5.2.11 The Catalan Numbers and the <i>k</i>-Gamma and <i>k</i>-Beta Functions <i>119</i></p> <p>5.2.12 Series Identities Involving the Catalan Numbers <i>119</i></p> <p>5.3 The FussCatalan Numbers <i>119</i></p> <p>5.3.1 A Definition of the FussCatalan Numbers <i>119</i></p> <p>5.3.2 A Product-Ratio Expression of the FussCatalan Numbers <i>120</i></p> <p>5.3.3 Complete Monotonicity of the FussCatalan Numbers <i>120</i></p> <p>5.3.4 A Double Inequality for the FussCatalan Numbers <i>121</i></p> <p>5.4 The FussCatalanQi Function <i>121</i></p> <p>5.4.1 A Definition of the FussCatalanQi Function <i>121</i></p> <p>5.4.2 A Product-Ratio Expression of the FussCatalanQi Function <i>122</i></p> <p>5.4.3 Integral Representations of the FussCatalanQi Function <i>123</i></p> <p>5.4.4 Complete Monotonicity of the FussCatalanQi Function <i>124</i></p> <p>5.5 Some Properties for Ratios of Two Gamma Functions <i>124</i></p> <p>5.5.1 An Integral Representation and Complete Monotonicity <i>125</i></p> <p>5.5.2 An Exponential Expansion for the Ratio of Two Gamma Functions <i>125</i></p> <p>5.5.3 A Double Inequality for the Ratio of Two Gamma Functions <i>125</i></p> <p>5.6 Some NewResults on the Catalan Numbers <i>126</i></p> <p>5.7 Open Problems <i>126</i></p> <p>Acknowledgments <i>127</i></p> <p>References <i>127</i></p> <p><b>6 Trace Inequalities of Jensen Type for Self-adjoint Operators in Hilbert Spaces: A Survey of Recent Results </b><i>135<br /></i><i>Silvestru Sever Dragomir</i></p> <p>6.1 Introduction <i>135</i></p> <p>6.1.1 Jensen's Inequality <i>135</i></p> <p>6.1.2 Traces for Operators in Hilbert Spaces <i>138</i></p> <p>6.2 Jensen's Type Trace Inequalities <i>141</i></p> <p>6.2.1 Some Trace Inequalities for Convex Functions <i>141</i></p> <p>6.2.2 Some Functional Properties <i>145</i></p> <p>6.2.3 Some Examples <i>151</i></p> <p>6.2.4 More Inequalities for Convex Functions <i>154</i></p> <p>6.3 Reverses of Jensen's Trace Inequality <i>157</i></p> <p>6.3.1 A Reverse of Jensen's Inequality <i>157</i></p> <p>6.3.2 Some Examples <i>163</i></p> <p>6.3.3 Further Reverse Inequalities for Convex Functions <i>165</i></p> <p>6.3.4 Some Examples <i>169</i></p> <p>6.3.5 Reverses of Hölder's Inequality <i>174</i></p> <p>6.4 Slater's Type Trace Inequalities <i>177</i></p> <p>6.4.1 Slater's Type Inequalities <i>177</i></p> <p>6.4.2 Further Reverses <i>180</i></p> <p>References <i>188</i></p> <p><b>7 Spectral Synthesis and Its Applications </b><i>193<br /></i><i>László Székelyhidi</i></p> <p>7.1 Introduction <i>193</i></p> <p>7.2 Basic Concepts and Function Classes <i>195</i></p> <p>7.3 Discrete Spectral Synthesis <i>203</i></p> <p>7.4 Nondiscrete Spectral Synthesis <i>217</i></p> <p>7.5 Spherical Spectral Synthesis <i>219</i></p> <p>7.6 Spectral Synthesis on Hypergroups <i>238</i></p> <p>7.7 Applications <i>248</i></p> <p>Acknowledgments <i>252</i></p> <p>References <i>252</i></p> <p><b>8 Various UlamHyers Stabilities of EulerLagrangeJensen General (</b><b><i>a</i></b><b><i>, </i></b><b><i>b</i></b><b>; </b><b><i>k </i></b><b>= <
There are no comments on this title.