OPAC header image
Amazon cover image
Image from Amazon.com
Image from OpenLibrary

Clustering methodology for symbolic data / Lynne Billard (University of Georgia), Edwin Diday (Universite de Paris IX--Dauphine).

By: Contributor(s): Material type: TextTextSeries: Wiley series in computational statisticsPublisher: Hoboken, NJ : Wiley, 2019Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119010388
  • 1119010381
  • 9781119010395
  • 111901039X
  • 9781119010401
  • 1119010403
Subject(s): Genre/Form: Additional physical formats: Print version:: Clustering methodology for symbolic dataDDC classification:
  • 519.5/3 23
LOC classification:
  • QA278.55
Online resources:
Contents:
Introduction -- Symbolic data, basics -- Dissimilarity, similarity, and distance measures -- Dissimilarity, similarity, and distance measures, modal data -- General clustering techniques -- Partitioning techniques -- Divisive hierarchical clustering -- Agglomerative hierarchical clustering.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

Introduction -- Symbolic data, basics -- Dissimilarity, similarity, and distance measures -- Dissimilarity, similarity, and distance measures, modal data -- General clustering techniques -- Partitioning techniques -- Divisive hierarchical clustering -- Agglomerative hierarchical clustering.

Description based on print version record and CIP data provided by publisher; resource not viewed.

There are no comments on this title.

to post a comment.

Find us on the map

Contact Us

Amarkantak, Village : Lalpur
Dist : Anuppur,
Madhya Pradesh - 484 887.
librarian@igntu.ac.in
+91-(07629)-269725