OPAC header image
Amazon cover image
Image from Amazon.com
Image from OpenLibrary

Wavelet based approximation schemes for singular integral equations / M.M. Panja, B.N. Mandal.

By: Contributor(s): Material type: TextTextPublisher: Boca Raton : CRC Press, Taylor and Francis Group, [2020]Description: 1 online resource (ix, 289 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780429534287
Subject(s): Additional physical formats: Print version:: Wavelet based approximation schemes for singular integral equationsDDC classification:
  • 515/.45 23 MAN
Contents:
MRA of function spaces -- Approximations in multiscale basis -- Weakly singular kernels -- An integral equation with fixed singularity -- Cauchy singular kernels -- Hypersingular kernels.
Summary: "Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering"-- Provided by publisher.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books Prof. Ram Dayal Munda Central Library, IGNTU Amarkantak M.P. Reference Mathematics 515/.45 MAN (Browse shelf(Opens below)) Not For Loan 80933

Includes bibliographical references and indexes.

MRA of function spaces -- Approximations in multiscale basis -- Weakly singular kernels -- An integral equation with fixed singularity -- Cauchy singular kernels -- Hypersingular kernels.

"Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering"-- Provided by publisher.

Description based on print version record and CIP data provided by publisher; resource not viewed.

There are no comments on this title.

to post a comment.

Find us on the map

Contact Us

Amarkantak, Village : Lalpur
Dist : Anuppur,
Madhya Pradesh - 484 887.
librarian@igntu.ac.in
+91-(07629)-269725